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NOTES 

A New One-Point Intrinsic Viscosity Method 

INTRODUCTION 

The intrinsic viscosity [q]  of a polymer solution is generally determined by measuring relative 
viscosities a t  a series of differing concentrations. In most cases, [q] can be evaluated convenient- 
ly using the graphic representations of Huggins' and Kraemer.2 This technique and other 
graphic solutions sometimes fail to provide accurate estimates of [q] ,  however, because they 
imply a linear, two-parameter approximation to an actual power-series relation between relative 
viscosity and concentration.3 No two-parameter solution can be generally valid, although each 
may be useful in a particular context. Nonlinear least-squares fitting of the actual curvilinear 
relation is a universal method for estimating [q] from relative viscosity data a t  a series of concen- 
t r a t i o n ~ . ~  This procedure requires machine computations which may not always be as conve- 
nient as graphic solutions. 

Considerable savings in time and effort would be realized if a determination of relative viscosi- 
ty a t  a single concentration could be used to estimate [q] .  A number of workers have proposed 
such methods."'0 Techniques such as that of Solomon and c o - w o r k e r ~ ~ ~ ~  seem; however, to be 
most reliable for low-concentration data in particular polymer-solvent combinations in which 
the Huggins' constantgJ1-'3 is not far from 1/3. Elliott and co-workersgJO have noted that the 
Martin equation'4 provides useful estimates of [q] from single-point measurements when a single 
slope constant can be assumed for the particular polymer-solvent system. A universal slope 
constant for all polymer-solvent combinations is not possible in this case. 

Many of the single-point methods appear to be useful for given polymer and solvent combina- 
tions. None has been demonstrated to be generally reliable without prior validation for un- 
known systems. This article describes a single-point [q] technique which appears to overcome 
this restriction. It will not be any more useful than any of its predecessors in cases where each of 
the former can be applied. It does appear to be valid, however, for a wide variety of polymers 
and solvents without adjustment for the peculiarities of the particular system. 

The new method is based on a model for prediction of Newtonian viscosities of concentrated 
polymer solutions, given the intrinsic viscosity in the particular ~olvent . '~J~  An initial, semiem- 
pirical modelI5 has been shown to account for viscosities of mixtures of several polymers in a 
common ~olvent '~  and for concentration effects in good solvents in gel permeation chromatogra- 
phy.I8 It has also been applied to universal calibration in gel permeation ~hromatography'~ and 
to the characterization of false viscosity in cellulose acetate solutions?0 

A more recent modification of the theoryI6 is less empirical and somewhat easier to apply. 
Both models give essentially equivalent viscosity predictions in fairly dilute polymer solutions. 

The second model can be used to estimate viscosities of concentrated solutions from a mea- 
sured value of relative viscosity a t  a single concentration.21 The technique described here is 
analogous to the latter calculations. The model presented assumes the existence of noninter- 
penetrating solvated spherical polymer entities. This assumption must fail a t  sufficiently high 
concentrations, and this limits application of the single-point method for estimation of concen- 
trated solution viscosities'6*21 This problem is not a factor in calculation of [q] because the con- 
centrations used must be chosen to avoid intermolecular interference. 

THEORY 

The reader is referred to the original articleI6 for complete derivation of the basic model, 
which employs a relation between relative viscosity and volume fraction of solvated polymer 
along with a calculation of the effects of concentration on hydrodynamic volume of solvated 
polymer molecules. The equations needed for the present calculation of [q] follow. 
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The volume fraction # of swollen polymer molecules in solution at concentration c (g cm-9 is 
given by 

where p is the density (g ~ m - ~ )  of the amorphous polymer at the solution temperature, and the 
infinite dilution swelling factor co is obtained from 

The use of eq. (1) is confined in theory to concentrations such that 0 I c -< 0.524p, because of the 
assumption in the model of a high concentration boundary condition corresponding to cubic 
packing of uniform spheres. 

With # from eq. (11, the Newtonian flow of suspensions of polymeric spheres is described 
by16,2Z 

where 90 and 9 are the solvent and solution viscosities, respectively. If the ( d ~ )  ratio is known 
at a single concentration, eq. (3) may be solved for #. The resulting value and the known c yield 
a value of in eq. (l), and this gives [v] from eq. (2). Equations (1) and (2) can be combined to 
give 

Equations (3) and (4) then yield [9], with given ( m / ~ )  and the corresponding c. 

RESULTS 

The roots of eq. (3) with given (tlolt)) were calculated with a successive quadratic factorization 
algorithmz3 (IBM subroutine PRBM, DPRBM). Only one of the seven roots obtained is real, 
positive, and within the range 0 I # I 0.524, as required by the model. There is thus no ambi- 
guity in the selection of the # value for use with the corresponding e term to estimate [9] from eq. 
(4). 

Table I compares [q] values obtained by this method with corresponding multipoint values. 
The comparisons were selected from the literature for difficult systems in which polymer molec- 
ular weight is high and some solvents are not thermodynamically good. The conventional multi- 
point plots tend to be curved in these cases and uncertainties in single-point model assumptions 
are usually emphasized. Solutions which approach more ideal behavior of Huggins and Kraemer 
plots are omitted for the sake of brevity, since the present model and other single-point methods 
will work well in these cases. 

The second entry in Table I is of particular interest since the butanone/isopropanol mixture is 
a theta solvent for poly~tyrene.~~ Although the basic model accounts for the inverse dependence 
of hydrodynamic volume on concentration in good solvents,’s it is not effective in theta systems 
where the extent of solvation is essentially independent of ~oncentrat ion.~~ The estimated [v] 
values are nevertheless fairly close to multipoint figures although the calculated [q] may depend 
slightly on the particular reference concentration, as shown in Table I for higher molecular 
weight polymers. 

The model may also be used, of course, to calculate the entire relative viscosity (q/qo)-c rela- 
tion. This involves use of the calculated co in reverse sequence, eq. ( 1 ) ~ .  (3), to estimate t)dq 
a t  different concentrations. The resulting values can be used to construct Huggins’ and Kraem- 
er2 plots for linear extrapolation to zero c and consequent estimation of [9]. Table I1 shows the 
results of such calculations for the first two entries in Table I, comprising polystyrenes in a good 
solvent (toluene) and the particular theta solvent. 
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TABLE I1 
Solution Properties of Polystyrenes 

ExperimentaP 
Calculated 

Concn., 
PoLymer Temp., g cm-’ [VI, [nl ,  

M W  Solvent “C x 10’ g l p ,  cm3 g-I. K , b  g/qa cm-lg-1. K, 

1.46 X lo6 toluene 

1.08 x lo6 toluene 

0.5 X lo6 

1.46 X lo6 

1.46 X lo6 

1.08 X l o6  

1.08 X 106 

0.50 X lo6 

toluene 

6:1 (vol) 
2-butanone: 
isopropanol 

30 

30 

30 

23 

23 

23 

23 

0.5158 
0.375 
0.320 
0.245 
0.200 
0.150 
0.090 
0.600a 
0.490 
0.350 
0.325 
0.250 
0.525a 
0.465 
0.315 
0.240 
0.125 

0.280 
0.225 
0.170 
0.365 
0.280a 
0.225 
0.170 
0.540a 
0.280 
0.180 
0.100 
0.540 

0.180 
0.100 

0.375 
0.290 
0.240 

0.365a 

0.280a 

0.515a 

2.91 
2.28 
2.03 
1.77 
1.60 
1.44 
1.25 
2.57 
2.21 
1.83 
1.73 
1.56 
1.71 
1.60 
1.40 
1.29 
1.15 
1.37 
1.27 
1.22 
1.15 
1.37 
1.27 
1.22 
1.15 
1.53 
1.24 
1.15 
1.08 
1.53 
1.24 
1.15 
1.08 
1.29 
1.21 
1.16 
1.13 

260 

193 

115 

89.0 

89.0 

79.0 

79.0 

52 

0.32 

0.29 

0.29 

0.89 

0.89 

0.72 

0.72 

0.27 

2.91 
2.27 
2.05 
1.76 
1.60 
1.44 
1.25 
2.57 
2.22 
1.81 
1.74 
1.55 
1.71 
1.62 
1.40 
1.30 
1.15 
1.37 
1.28 
1.22 
1.17 
1.36 
1.27 
1.22 
1.16 
1.53 
1.26 
1.16 
1.09 
1.49 
1.24 
1.15 
1.08 
1.29 
1.21 
1.16 
1.13 

259 

190 

114 

92.7 

91.0 

86.0 

81.6 

52 

0.32 

0.33 

0.30 

0.11 

0.22 

0.28 

0.38 

0.27 

Experimental (??/qo) a t  this concentration used in eq. (3) as calibration value for 

b Huggins constants were calculated from eq. (5) from linear least-squares fits to the 
the model described in text. 

data listed in this table. 

It is not surprising that the calculated relative viscosities are very close to the experimental 
values in toluene solutions,’6.21 but the theta solvent figures are also surprisingly good estimates. 

The procedure described also affords an estimate of Huggins’ constant K1 from the equation’: 

Although the relative viscosities listed in Table I1 are close to experimental values, the calcula- 
tion of Huggins’ constant, for which results are also listed, is not as satisfactory. These slope 
constants were calculated from the experimental and estimated data using (v/m) figures rounded 
to two decimal places, to correspond to the original reference.24 The resulting Huggins’ con- 
stants are very sensitive to rounding-off variations since K1 is the quotient of the slope of the[(q 
- ~ o ) / c ~ o ] - c  plot divided by the square of the intercept. Thus, although the model predicts the 
slopes and intercepts very well, it does not seem to be reliable for estimation of K1. 

It may be questioned, indeed, whether the Huggins constant is sufficiently free of inadvertent 
experimental uncertainty to be an unequivocal property of the polymer-solvent system. Q u a -  
tion ( 5 )  is a truncated version of a virial equation in concentration?l and K1 or any other linear 
slope parameter reflects the approximation of a chord to a real curve. The value measured may 
depend on the particular experimental concentrations to an extent which can be significant com- 
pared to the limited range of K1. 
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We are obliged to conclude, then, that calculation of Huggins constants from single-point vis- 
cosity data is not likely to be a fruitful exercise. 

Returning to Table I, it can be seen that the model used predicts polystyrene [q] values accu- 
rately in many solvents, and that choice of a particular concentration for calculation has little ef- 
fect in the range normally used for multipoint [q]  measurements. 

The data for poly(ethy1 methacrylate) are for high molecular weight polymers which have been 
shown to be amenable to the Solomon's single-point [q] calculations! This again is a theta sys- 
ternzs which presents an extreme test for the present model, particularly with high molecular 
weight polymers. The coincidence shown seems to be good. 

The poly(methy1 methacrylate)-toluene data given in Table I are for a system in which the 
Huggins and Kraemer plots are not as satisfactory as The present model estimates [q] 
values which coincide with multiconcentration estimates to within a few per cent. 

The polyethylene and polypropylene data are also examples of cases in which eq. ( 5 )  does not 
represent experimental values very well.9 The single-point method of Solomon and Ciuta5 is re- 
ported not to be effective here for concentrations such that [qlc > 1. Elliott and co-workersg 
have found that a useful single-point [q] estimate can be obtained by assuming a universal slope 
constant in the Martin eq~at i0n . I~  This constant will not apply to other polymer-solvent sys- 
tems. The present model is shown in Table I1 to predict experimental [q] figures to an accuracy 
which should be satisfactory for most practical purposes. The raw data for polyethylene were 
read from the published Huggins plots, while the polypropylene relative viscosities were recon- 
structed from the reported Martin equation  correlation^.^ Use of actual measured values might 
be expected to improve the reliability of the calculated [q] figures. 

In the hydroxyethyl cellulose-water system listed in Table I, a single-point [q] method is also 
applicable using the Martin equation with a different slope constant from that in polyolefin-de- 
calin solutions mentioned above.1° The present model also provides useful [q] estimates, even 
with very high molecular weight polymers. This polymer-solvent combination was of interest 
because application of the basic model seems to be restricted to relatively low concentrations in 
hydrogen- bonding systems.16 

CONCLUSIONS 

The systems in Table I are chosen deliberately to emphasize possibilities for discrepancies be- 
tween multipoint and single-point [q] values. The new model appears to be generally useful and 
reliable although there will be extreme cases in which the calculated intrinsic viscosity will de- 
pend to some extent on the particular relative viscosity which is chosen as a reference. It seems 
clear that the method will provide accurate [q] estimates in most cases of practical interest. 

It is possible to use intrinsic viscosities in a series of solvents to measure Mw, if Mark-Houwink 
relations are known for the polymer in each solvent.32 Conventional multipoint measurements 
of [q]  in the three or four solvents required for this method are a t  least as time consuming as a 
light-scattering determination of fiw. Use of the single-point method described here will reduce 
the experimental effort considerably and make the intrinsic viscosity estimate of Mw more effi- 
cient. 

Production of polymers like PVC and some synthetic fiber formers is routinely controlled on 
relative viscosities a t  various concentrations. Calculation of [q] values from a reliable single- 
point method would result in a useful consolidation of data from different suppliers. The model 
proposed seems to be generally applicable for this purpose. 

The author thanks the Paint Research Institute and the National Research Council of Canada 
for financial assistance. 
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